

## **Post Kidney Transplant Malignancies**

#### **B.** Einollahi

#### **Professor of Internal Medicine/Nephrology Division**

Baqiyatallah University of Medical Sciences – Tabriz; Iran 2019



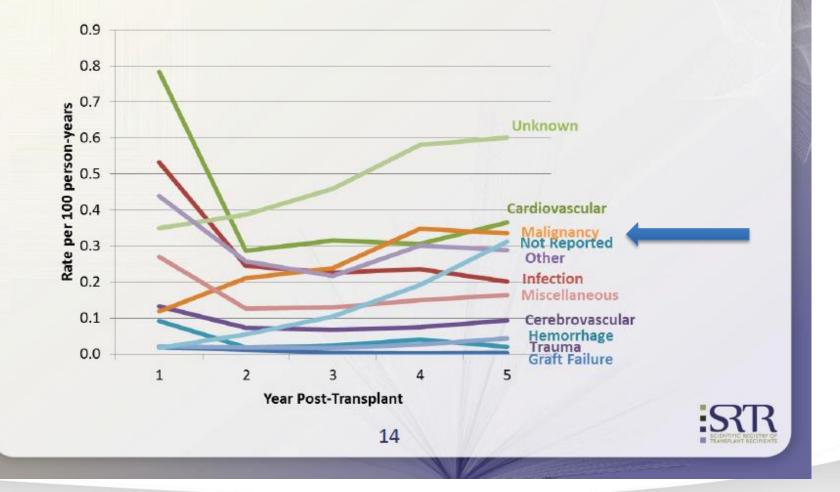
### **Disclosures**

- No financial conflicts to disclose that pertain to this presentation
- Discussion of off label use of medications: None
- Editorial board conflict disclosure: Chief Editor of NU-Monthly J
- I am a Nephrologist





## Are transplant patients at increased risk for malignancy?






- Cancer after transplantation is 3x more likely than general population.
- These cancers have 5 fold or > increase in transplant patients
  - Kaposi Sarcoma
  - Skin Cancer
  - Non-Hodgkin Lymphoma
  - Liver
  - Anus/Lip/Vulva
- Malignancy represents the 3<sup>rd</sup> most common cause of death in renal transplant recipients.



## Cause-Specific Rates of Death with Function 2005-2010





Myth:

## All cancers are increased by immunosuppression.



#### Standard Incide nce Ratio (SIR) of cancer after kidney Tx, compared general population

|           | Colon, lung, prostate, gastric,          | vs. general<br>population |  |  |
|-----------|------------------------------------------|---------------------------|--|--|
|           | esophagus, pancreas, ovary and<br>breast | 2                         |  |  |
| Moderate  | Testes and urinary, bladder              | 3                         |  |  |
| Risk      | Cutaneous melanoma, leukemia,            | _                         |  |  |
|           | liver and gynecological tumors           | •                         |  |  |
| High risk | Kidney                                   | 15                        |  |  |
|           | Kaposi sarcoma, PTLD, skin cancer        | >20                       |  |  |

Kasiske BL, et al. *Am J Transplant.* 2004;4:905–913.

Cancer rates

| Cancer         |              | Overall Incidence % | rce % Frequency and cumulative incidence Total frequency |       |       |       |       |       | iency     |         |       |
|----------------|--------------|---------------------|----------------------------------------------------------|-------|-------|-------|-------|-------|-----------|---------|-------|
|                |              |                     | Freq1                                                    | Inc1% | Freq2 | Inc2% | Freq3 | Inc3% | frequency | percent | total |
| GI             | Colon        | 0.04                |                                                          |       | 2     | 0.75  |       |       | 6         | 2.4     | 17    |
|                | Gastric      | 0.03                |                                                          |       | 1     | 0.4   |       |       | 4         | 1.6     |       |
|                | Rectum       | 0.01                | 1                                                        | 0.4   |       |       |       |       | 2         | 0.8     |       |
|                | pancreases   | 0.007               |                                                          |       |       |       | 1     | 0.4   | 1         | 0.4     |       |
|                | hepatoma     | 0.02                |                                                          |       |       |       | 2     | 0.75  | 3         | 1.2     |       |
|                | esophagus    | 0.007               | 1                                                        | 0.4   |       |       |       |       | 1         | 0.4     |       |
| skin           | SCC          | 0.3                 | 5                                                        | 1.9   | 4     | 3.3   | 1     | 3.7   | 40        | 13.5    | 141   |
|                | BCC          | 0.1                 | 3                                                        | 1.1   | 2     | 1.9   | 2     | 2.6   | 15        | 6.1     |       |
|                | Melanoma     | 0.01                |                                                          |       |       |       | 1     | 0.4   | 2         | 0.8     |       |
| (              | KS           | 0.6                 | 40                                                       | 14.3  | 15    | 16.9  | 8     | 20    | 84        | 31      |       |
|                | SCC+BCC      | 0.007               |                                                          |       |       |       |       |       | 1         | 0.4     |       |
| GU & RS        | Brest        | 0.02                |                                                          |       | 1     | 0.4   |       |       | 3         | 1.2     | 25    |
|                | Uterin       | 0.01                |                                                          |       |       |       | 1     | 0.4   | 2         | 0.8     |       |
|                | Ovary        | 0.02                |                                                          |       |       |       |       |       | 3         | 1.2     |       |
|                | Prostat      | 0.007               |                                                          |       | 1     | 0.4   |       |       | 1         | 0.4     |       |
|                | Seminoma     | 0.01                |                                                          |       | 1     | 0.4   |       |       | 2         | 0.8     |       |
|                | RCC          | 0.04                | 1                                                        | 0.4   | 1     | 0.75  |       |       | 6         | 2.4     |       |
|                | TCC          | 0.06                | 1                                                        | 0.4   |       |       |       |       | 8         | 3.3     |       |
| Pulmonary      | Mesothelioma | 0.007               | 1                                                        | 0.4   |       |       |       |       | 1         | 0.4     | 3     |
| $\frown$       | lung         | 0.02                | 1                                                        | 0.4   |       |       | 1     | 0.75  | 3         | 1.2     |       |
| PTLD           |              | 0.5                 | 17                                                       | 6.4   | 7     | 3.8   | 7     | 11.6  | 72        | 27.3    | 72    |
| Thyroid        |              | 0.01                |                                                          |       | 1     | 0.4   |       |       | 2         | 0.8     | 2     |
| Parathyroid    |              | 0.007               |                                                          |       |       |       |       |       | 1         | 0.4     | 1     |
| Chondrosarcoma |              | 0.007               |                                                          |       |       |       |       |       | 1         | 0.4     | 1     |
| Pelvic sarcoma |              | 0.007               |                                                          |       | 1     | 0.4   |       |       | 1         | 0.4     | 1     |
| Brain          |              | 0.02                |                                                          |       | 1     | 0.4   |       |       | 3         | 1.2     | 3     |

Freq1: frequency 1st year, Freq2: frequency 2nd year, Freq3: frequency 3rd year

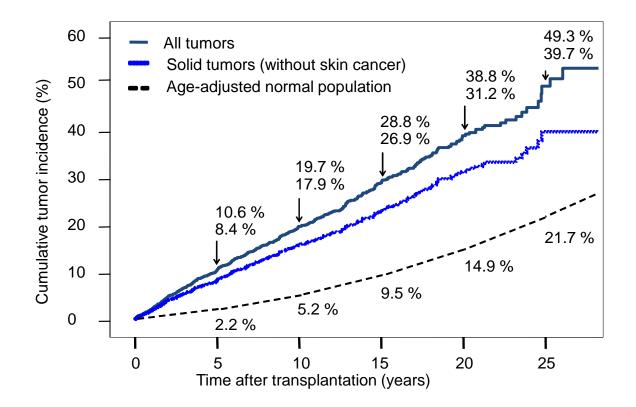
Inc1: incidence 1st year, Inc 2: incidence 2nd year, Inc 3: incidence 3rd year

GI: gastrointestinal, GU & RS: genitourinary and reproductive system, PTLD: post transplantation lymphoproliferative disorder, KS: Kaposi's sarcoma, SCC: squamouse cell carcinoma, BCC: basal cell carcinoma, RCC: renal cell carcinoma, TCC: transitional cell carcinoma

12525 RTRs, accounting for up to 59% of all kidney transplantation in Iran

Einollahi B, et al. Journal of Cancer 2012



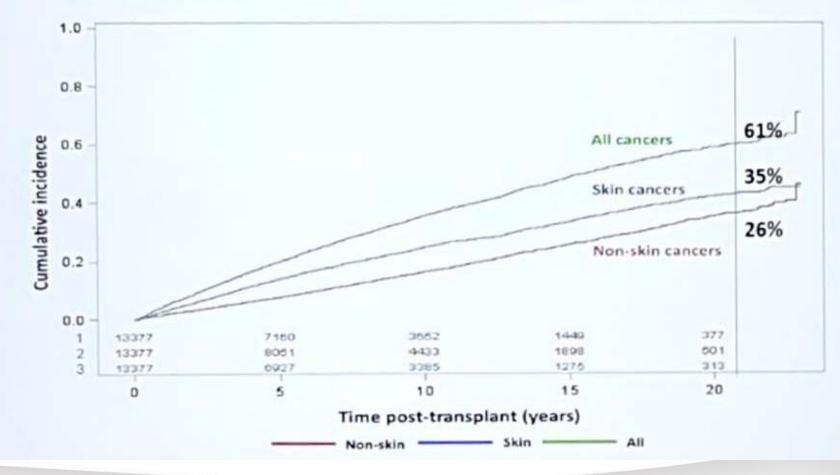

#### **Common malignancies after KT**

| Cancer type    | Incidence/10,000<br>person-years | SIR (95% CI)        |  |  |
|----------------|----------------------------------|---------------------|--|--|
| Skin cancer    | 23.7                             | 13.85 (11.92-16.00) |  |  |
| Kaposi sarcoma | 15.5                             | 61.46 (50.95-73.49) |  |  |
| PTLD           | 194.0                            | 7.54 (7.17-7.93)    |  |  |
| Lung           | 173.4                            | 1.97 (1.86-2.08)    |  |  |
| Liver          | 120                              | 11.56 (10.83-12.33) |  |  |
| Kidney         | 97                               | 4.65 (432-4.99)     |  |  |

Engels EA, et al. JAMA 306: 1891-1901, 2011



#### *Risk for cancer increases with time posttransplant*



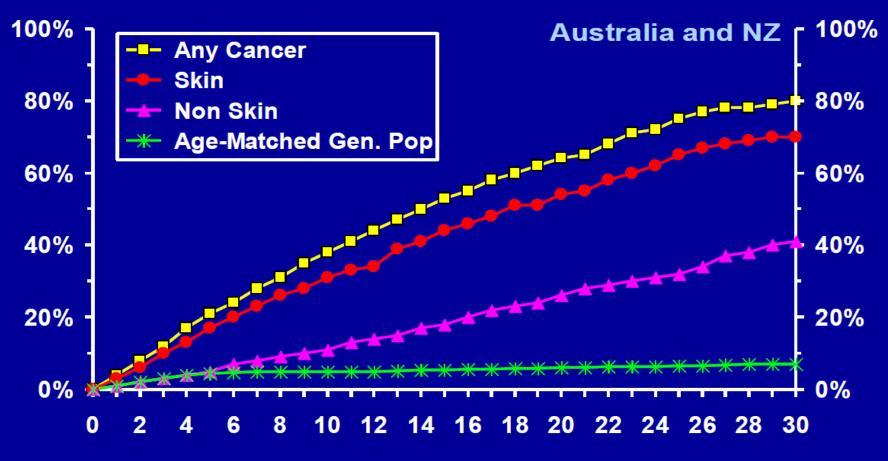

Based on 2419 renal transplant recipients from the Munich Großhadern transplantation center Wimmer CD, et al. Kidney Int. 2007;71:1271–1278.



#### **Cancer is common after kidney transplantation**






MAYO CLINIC

nal Society of Rephrology

IPNA

Tabriz , Iran 19-22 November 2019

## Cancer occurs in 80% of kidney transplanted patients by 30 years



Years Post Transplant

Tabriz, Iran 19-22 November 2019



#### No increased risk shown

- Breast
- Prostate
- Rectum
- Ovary/Uterus
- Brain
- Pancreas

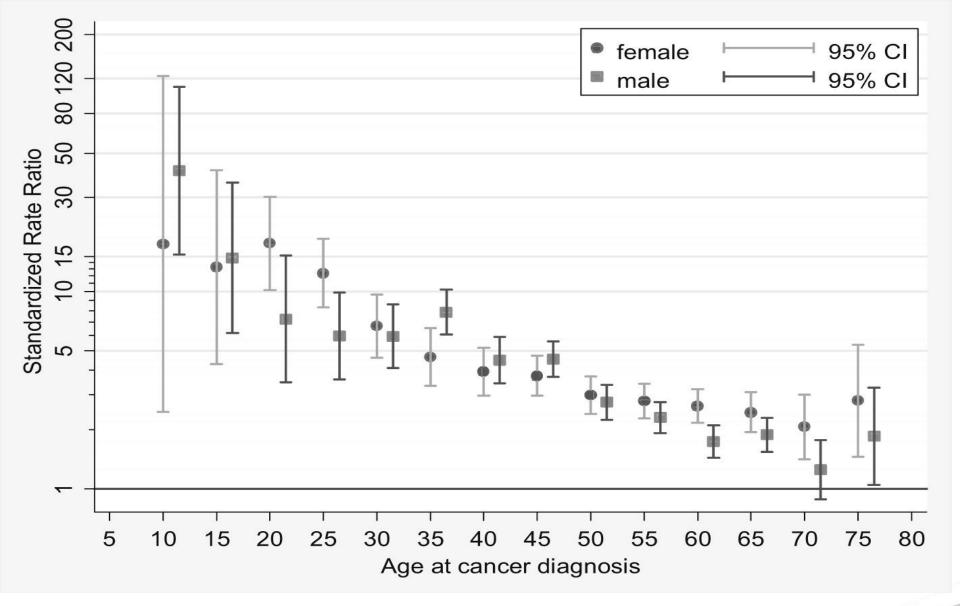


## Myth: *All cancers are increased by immunosuppression*

**Reality:** 

# Some cancers are not increased

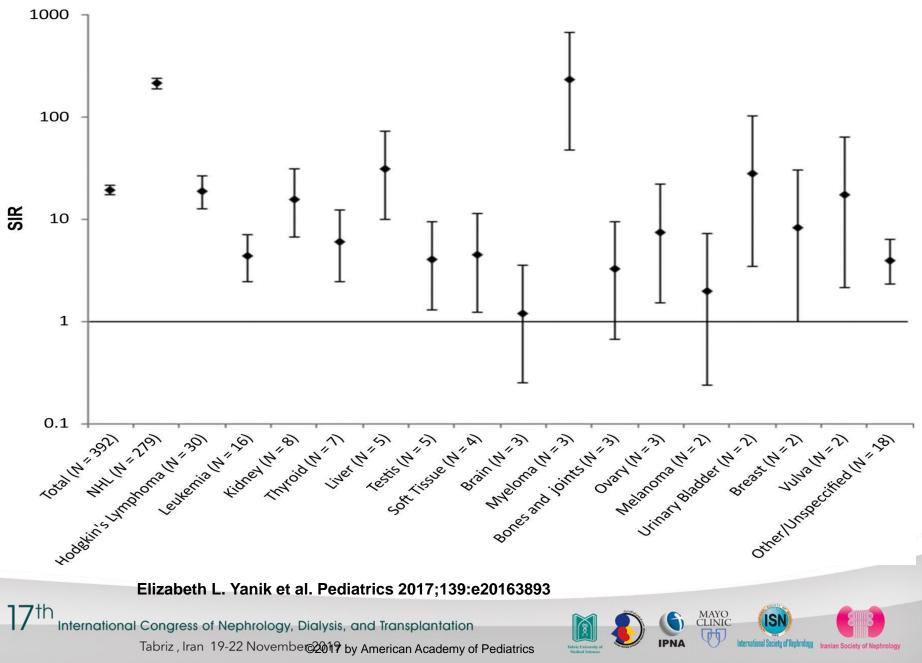




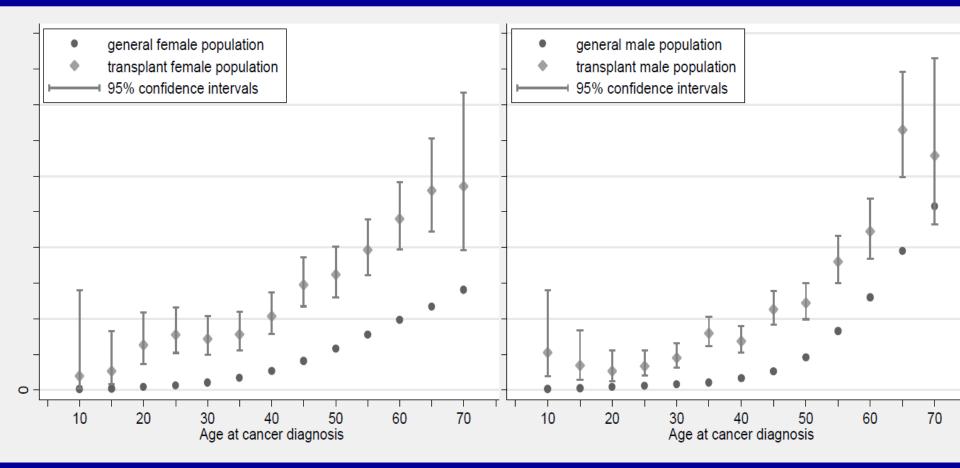

#### Cancer is a disease of old people

### **Reality:**

### More common in the old, but relatively much higher risk in young transplant patients







Advances in Chronic Kidney Disease 2014 21, 106-113DOI: (10.1053/j.ackd.2013.07.003)

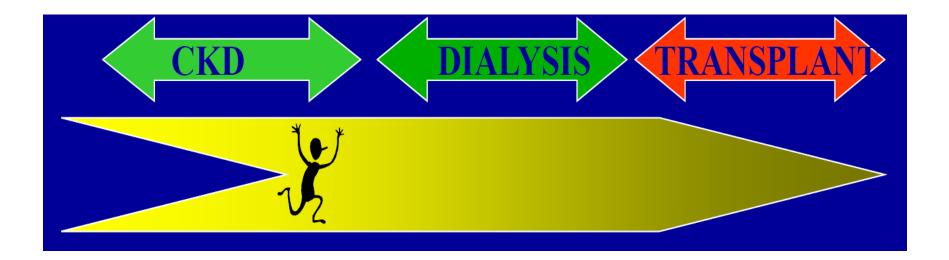


#### SIRs for cancer among US pediatric transplant recipients.

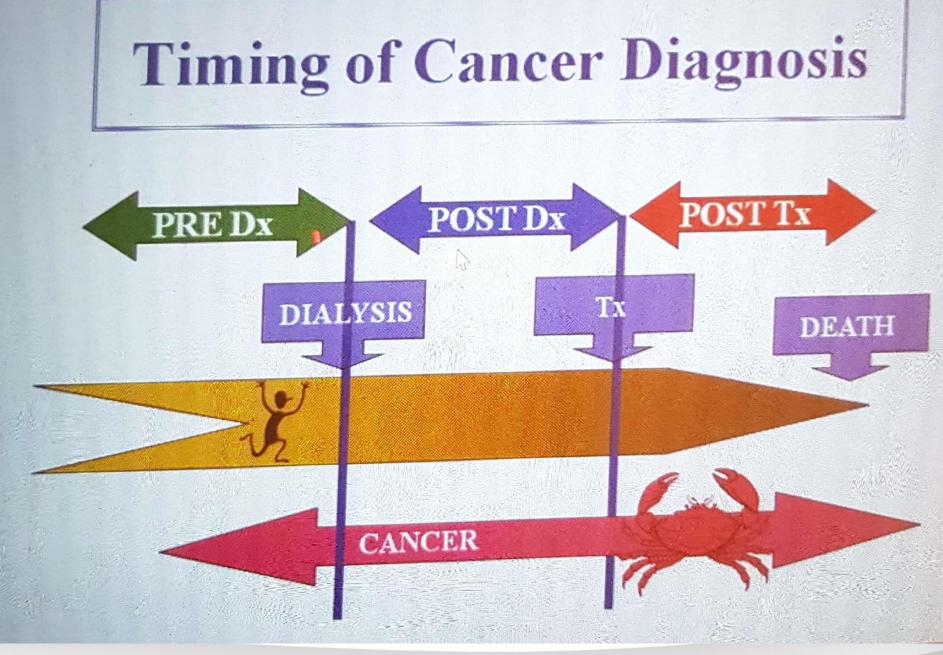


#### Incident cancer rates after kidney transplantation are similar to people 20+ years older in the gen pop



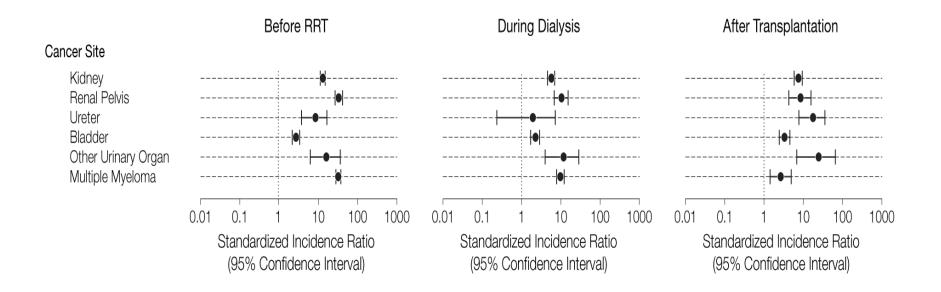

Webster et al. Am J Transplantation 2007; 7: 2140–2151

Myth:


## Cancer is only increased after transplantation









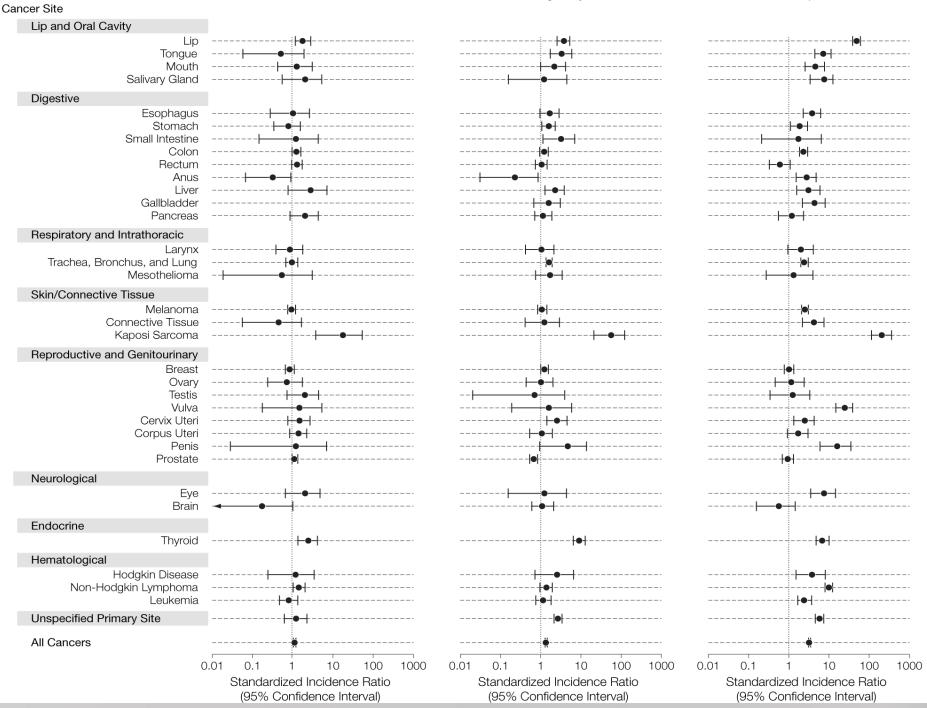


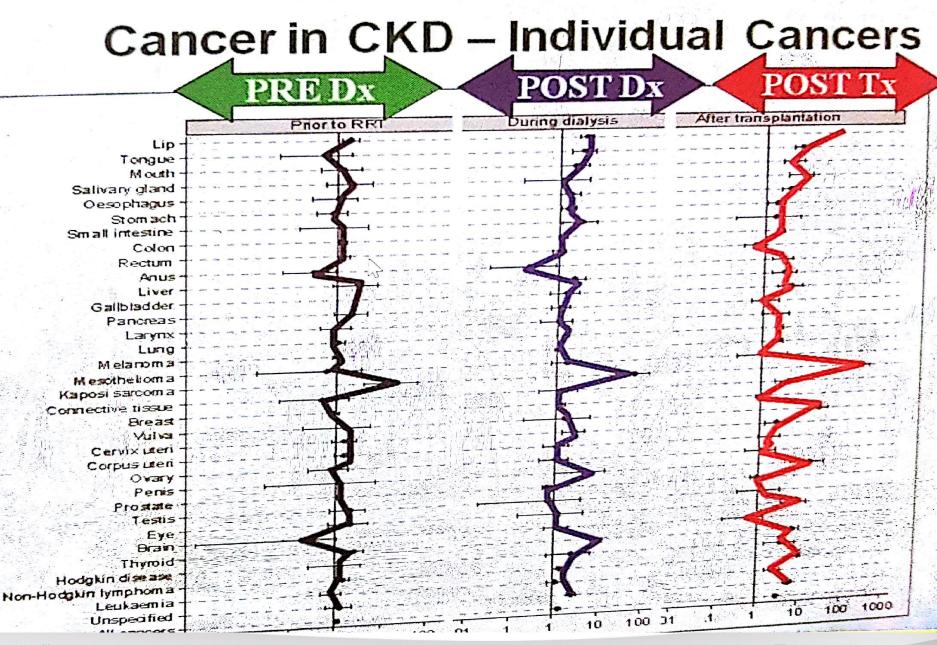



#### Risk of Cancers Frequently Known to Cause ESKD in Australian Patients With ESKD



<u>Claire M. Vajdic, et al, JAMA. 2006;296(23):2823-2831.</u>




#### Before RRT

#### **During Dialysis**

#### After Transplantation

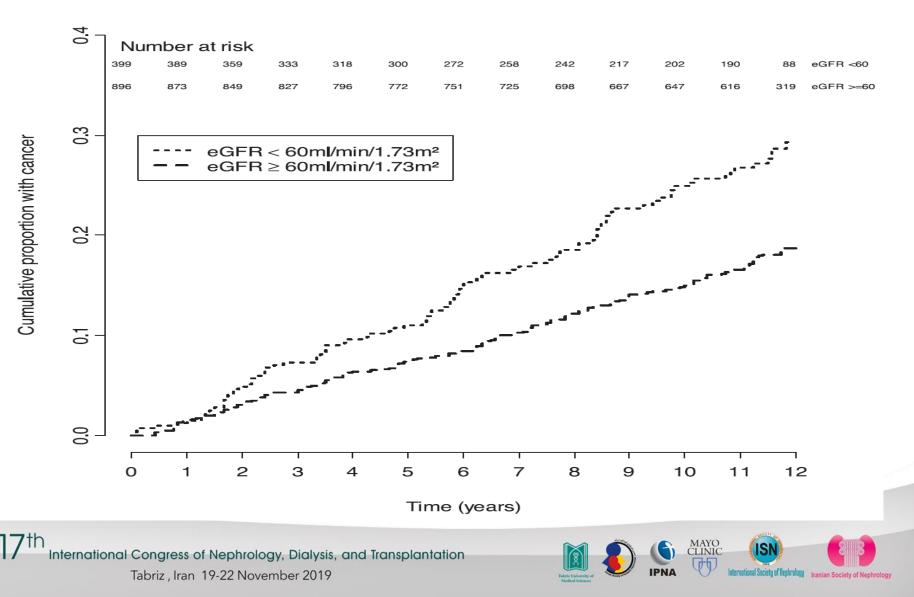




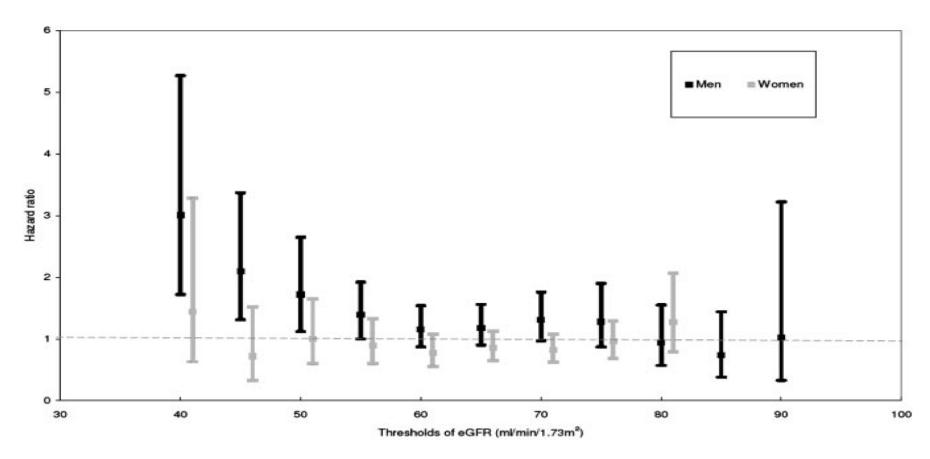
International Congress of Nephrology, Dialysis, and Transplantation



Tabriz, Iran 19-22 November 2019


### **Myth:** All cancer is increased by immunosuppression

**Reality:** 


# It starts at least 5 years before dialysis



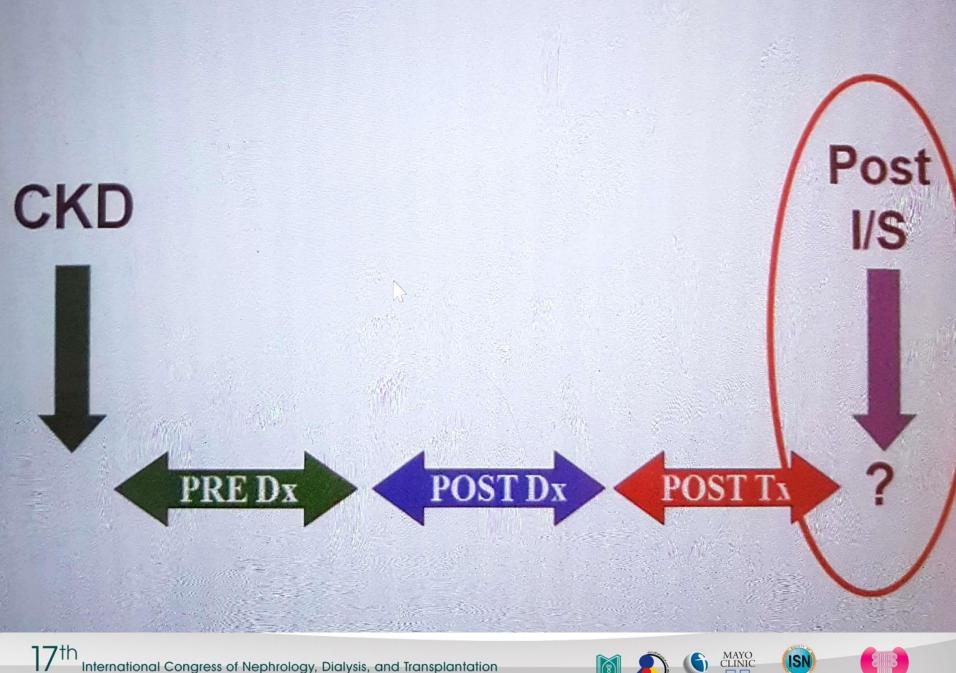
#### Cancer Risk in CKD 1-3 Blue Mountains Eye Study



#### Cancer Risk in CKD 1-3 Blue Mountains Eye Study



**Figure 4.** Adjusted HRs for incident cancers across various thresholds of eGFR in both men and women.




## **Myth:** All cancer is increased by immunosuppression

**Reality:** 

# It starts more than 5 years before dialysis







## Is increased cancer risk reversed upon cessation of immunosuppression?



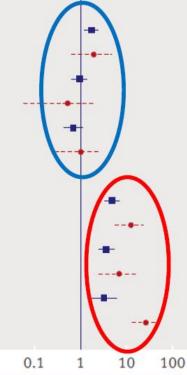
## BMJ

to for all a second second

## Effect of reduced immunosuppression after kidney transplant failure on risk of cancer: population based retrospective cohort study

Marina T van Leeuwen, lecturer, epidemiologist,<sup>12</sup> Angela C Webster, senior lecturer, medical epidemiologist, and nephrologist,<sup>3,4,5</sup> Margaret R E McCredie, associate professor, epidemiologist,<sup>6</sup> John H Stewart, nephrologist,<sup>6</sup> Stephen P McDonald, associate professor, nephrologist,<sup>3,7</sup> Janaki Amin, senior lecturer, statistician,<sup>1</sup> John M Kaldor, professor, epidemiologist,<sup>1</sup> Jeremy R Chapman, professor, nephrologist,<sup>5</sup> Claire M Vajdic, senior lecturer, epidemiologist,<sup>8</sup> Andrew E Grulich, professor, medical epidemiologist<sup>1</sup>

| Infection related           |                |                        |   |     |                       |       |
|-----------------------------|----------------|------------------------|---|-----|-----------------------|-------|
| Kaposi's sarcoma            | Transplant     | 231 (111 to 425)       |   | 10  | 1.00                  |       |
|                             | Dialysis       | Upper CI 622†          | * | 0   | 0.25 (0.00 to 1.65)‡  | 0.175 |
| Non-Hodgkin's lymphoma      | Transplant     | 9.73 (8.08 to 11.62)   | - | 122 | 1.00                  |       |
|                             | Dialysis       | 2.05 (0.42 to 5.99)    |   | 3   | 0.20 (0.06 to 0.65)   | 0.007 |
| Anogenital                  | Transplant     | 5.96 (3.93 to 8.67)    |   | 27  | 1.00                  |       |
|                             | Dialysis       | 1.82 (0.05 to 10.11)   |   | 1   | 0.41 (0.05 to 3.04)   | 0.380 |
| Oral cavity and oropharynx  | Transplant     | 3.46 (2.01 to 5.53)    |   | 17  | 1.00                  |       |
|                             | Dialysis       | Upper CI 6.32 †        | * | 0   | 0.36 (0.00 to 2.21) ‡ | 0.322 |
| Stomach                     | Transplant     | 1.76 (0.85 to 3.24)    |   | 10  | 1.00                  |       |
|                             | Dialysis       | 2.89 (0.35 to 10.45)   |   | 2   | 1.46 (0.30 to 7.16)   | 0.640 |
| Increased in immunodeficier | nt populations |                        |   |     |                       |       |
| Lip                         | Transplant     | 52.27 (45.27 to 60.02) |   | 200 | 1.00                  |       |
|                             | Dialysis       | 2.16 (0.05 to 12.05)   |   | 1   | 0.04 (0.01 to 0.31)   | 0.002 |
| Melanoma                    | Transplant     | 2.74 (2.17 to 3.41)    | - | 80  | 1.00                  |       |
|                             | Dialysis       | 0.58 (0.07 to 2.08)    |   | 2   | 0.16 (0.04 to 0.64)   | 0.010 |
| Leukaemia                   | Transplant     | 2.58 (1.38 to 4.42)    |   | 13  | 1.00                  |       |
|                             | Dialysis       | 5.25 (1.08 to 15.33)   | • | 3   | 1.52 (0.41 to 5.67)   | 0.533 |
| Lung                        | Transplant     | 2.14 (1.61 to 2.77)    | - | 56  | 1.00                  |       |
|                             | Dialysis       | 2.59 (1.12 to 5.11)    |   | 8   | 1.24 (0.58 to 2.68)   | 0.579 |


# BMJ

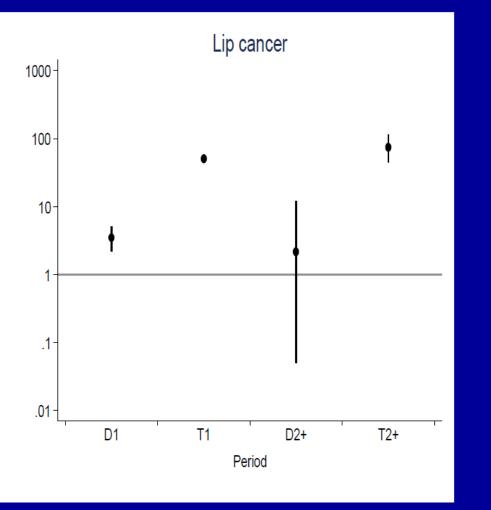
## Effect of reduced immunosuppression after kidney transplant failure on risk of cancer: population based retrospective cohort study

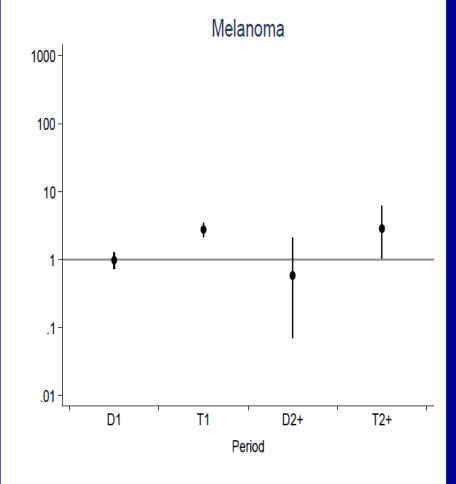
Marina T van Leeuwen, lecturer, epidemiologist,<sup>12</sup> Angela C Webster, senior lecturer, medical epidemiologist, and nephrologist,<sup>3,4,5</sup> Margaret R E McCredie, associate professor, epidemiologist,<sup>6</sup> John H Stewart, nephrologist,<sup>6</sup> Stephen P McDonald, associate professor, nephrologist,<sup>3,7</sup> Janaki Amin, senior lecturer, statistician,<sup>1</sup> John M Kaldor, professor, epidemiologist,<sup>1</sup> Jeremy R Chapman, professor, nephrologist,<sup>5</sup> Claire M Vajdic, senior lecturer, epidemiologist,<sup>8</sup> Andrew E Grulich, professor, medical epidemiologist<sup>1</sup>

#### Not increased in immunodeficient populations

| Colon                  | Transplant  | 1.75 (1.24 to 2.39)    |
|------------------------|-------------|------------------------|
|                        | Dialysis    | 1.99 (0.65 to 4.65)    |
| Breast (female)        | Transplant  | 0.97 (0.66 to 1.36)    |
|                        | Dialysis    | 0.54 (0.06 to 1.93)    |
| Prostate               | Transplant  | 0.70 (0.44 to 1.06)    |
|                        | Dialysis    | 1.05 (0.29 to 2.69)    |
| End stage kidney disea | ase related |                        |
| Kidney                 | Transplant  | 4.93 (3.35 to 7.00)    |
|                        | Dialysis    | 12.38 (5.66 to 23.49)  |
| Urinary tract          | Transplant  | 3.69 (2.45 to 5.33)    |
|                        | Dialysis    | 7.07 (2.59 to 15.38)   |
| Thyroid                | Transplant  | 3.29 (1.58 to 6.05)    |
|                        | Dialysis    | 26.37 (12.64 to 48.49) |
| ~~~~                   |             |                        |



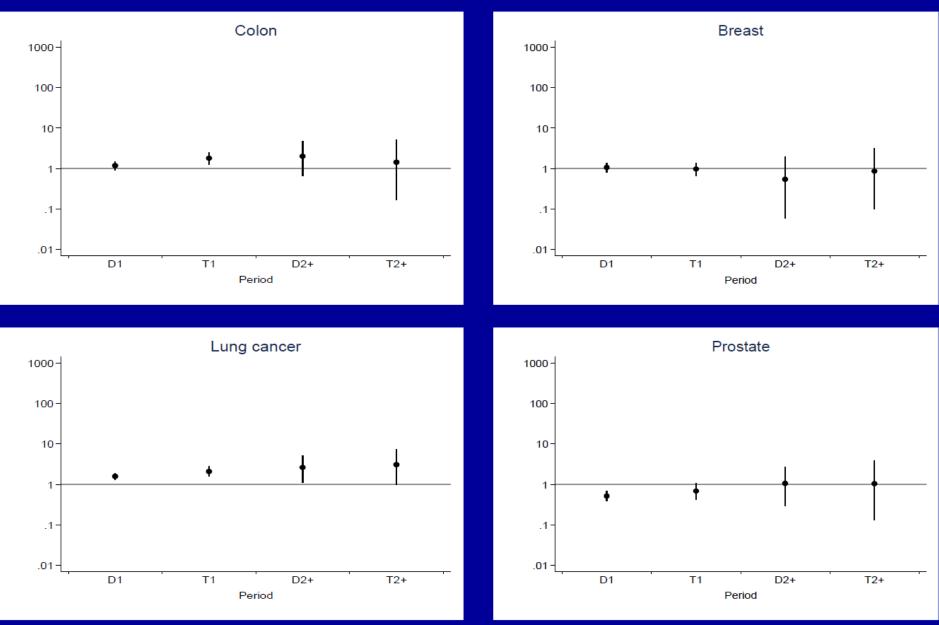

0


| 39 | 1.00                 |        |
|----|----------------------|--------|
| 5  | 1.32 (0.50 to 3.46)  | 0.571  |
| 33 | 1.00                 |        |
| 2  | 0.57 (0.13 to 2.42)  | 0.445  |
| 22 | 1.00                 |        |
| 4  | 1.56 (0.52 to 4.73)  | 0.430  |
| 31 | 1.00                 |        |
| 9  | 2.08 (0.96 to 4.51)  | 0.064  |
| 28 | 1.00                 |        |
| 6  | 1.77 (0.70 to 4.44)  | 0.225  |
| 10 | 1.00                 |        |
| 10 | 6.77 (2.64 to 17.39) | (0.001 |
|    |                      |        |

1000



## Intriguing cancers showing reversibility of risk





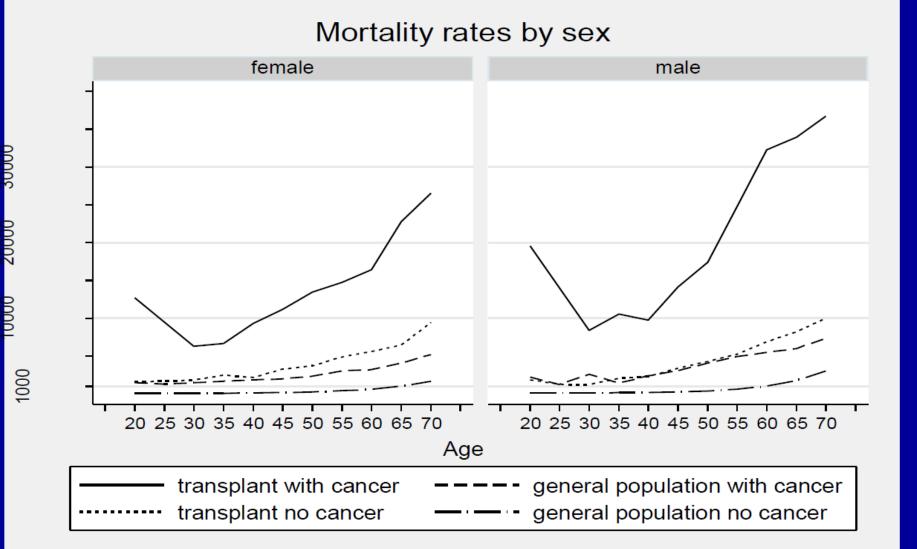

van Leeuwen et al. CEBP 2009;18:561-9

Vajdic et al. CEBP 2009;18:2297-2303

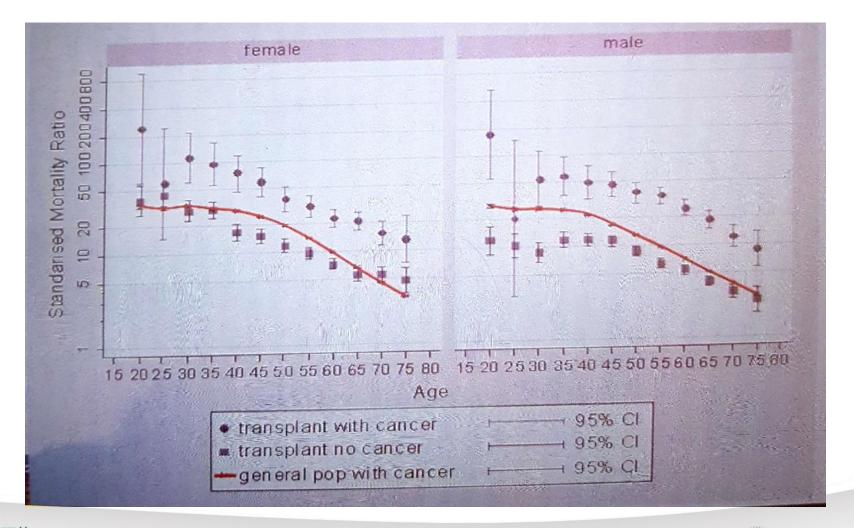
#### Cancers showing no change in risk



#### Immunosuppression currency and risk


- The effect of immunosuppression on cancer risk is rapidly reversible for some, but not all, cancer types
- Risk reversal was mostly, although not exclusively, observed for cancers with a confirmed infectious cause
- Risk of other cancers, especially those related to ESKD, remains significantly elevated after reduction of immunosuppression
- This finding offers insight into the role of current functional immunity in cancer prevention and may help inform the management of cancer risk in other immunosuppressed populations

Myth


# Cancer mortality is the same as in the general population



## Impact of cancer: death rate comparisons



## Mortality by age and sex





# Impact of cancer on survival within transplant population

|               | <b>Risk of death</b> |  |
|---------------|----------------------|--|
| Age 35-44     | 1.9                  |  |
| 45-54         | 3.1                  |  |
| >=55          | 4.5                  |  |
| Men           | 1.1                  |  |
| DM ESKD       | 1.8                  |  |
| White race    | 0.8                  |  |
| Graft failure | 3.8                  |  |
| Cancer        | 4.1                  |  |

ANZDATA 15, 183 recipients Mean follow up 9 years Cox model with time dependent covariates



## Myth:

# Cancer mortality is the same as in the general population

## **Reality:**

# Mortality is far worse with both a transplant and cancer



### **Proposed Risk Factors for Posttransplant Malignancy**





## **Mechanisms of developing malignancy**

Develop in three different ways:
Transmission of malignancy from donor
De novo occurrence in recipient

Recurrent malignancy in recipient

Peter J.Morris, Stuart, Kidney transplantation: principles and practice 6<sup>th</sup> edition



Very Low Incidence of Donor Transmission Cancers

## **UK Transplant Registry**

• 2001-10: Tumor transmission with an incidence of 0.06%

Desai et al. Transplantation 2012,94(12): 1200-7

 1985-2001: 177 Donors with CNS Neoplasms – no transmission even by high grade tumors

Watson et al. Am J Transplant 2010, 10(6): 1437-44



## **Transmission of Cancer from the Donor**

 Melanoma : most common transferred from a donor to recipient

 Post-transplant lymphoproliferative disorder (PTLD) in a recipient may be a direct result of viral transmission from the donor.

Peter J.Morris, Stuart, Kidney transplantation: principles and practice 6th edition

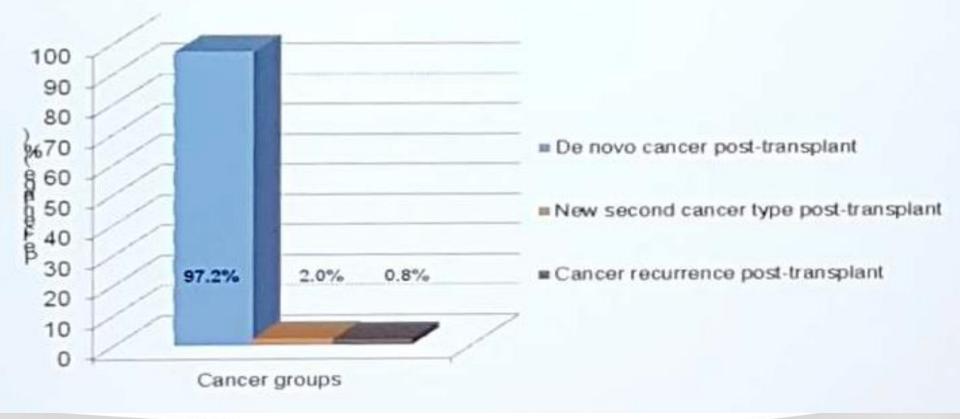




## Molecular Cytogenetic Tests

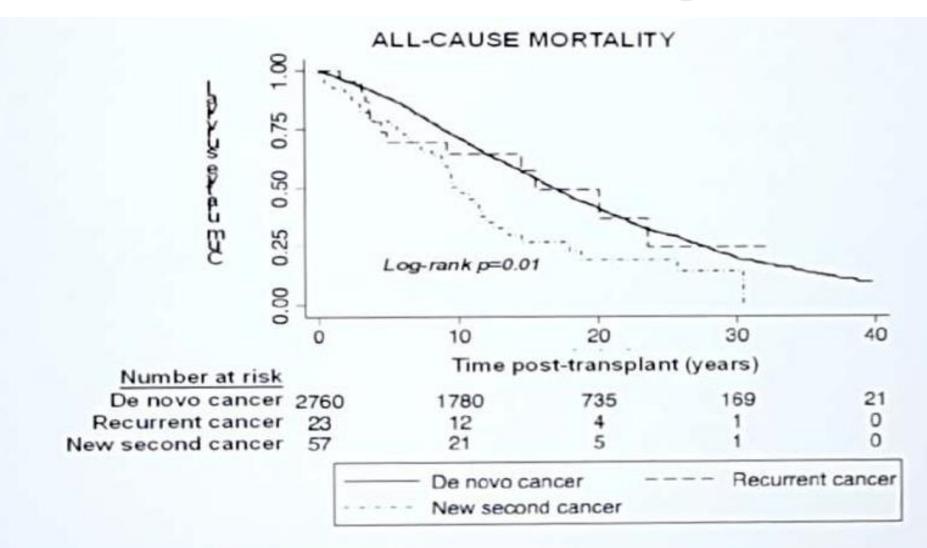
- FISH Fluorescence in situ hybridization Indicates only XX vs XY chromosomes
- MAA micro-satellite allelic analysis Distinction between individuals based on genetic polymorphism
- CGH comparative genomic hybridization Comparison of the chromosomes in the genome

Myth


## Is Cancer Recurrence after Kidney Transplantation Common?



#### **Cancer Recurrence Post-Transplant**


#### Cumulative incidence of cancer post-transplant in recipients with and without prior cancer

Incident RTR with cancer after transplantation 1965-2012 (n=2840)



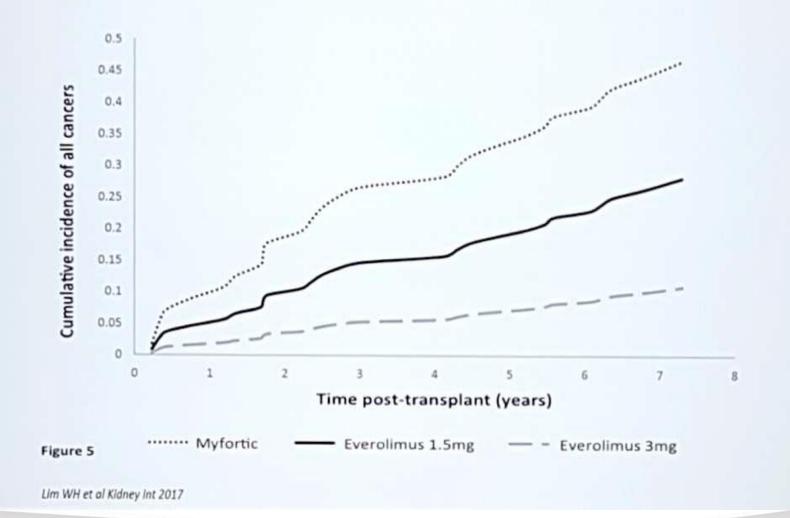


### **Cancer Recurrence Post-Transplant**



Viecelli A et al Transplantation 2014, ANZDATA registry




Myth

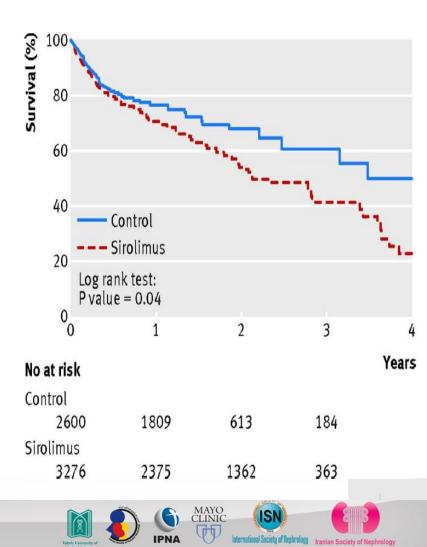
## *m-TOR inhibitors could be reduced incidence of cancer after kidney Tx. Does it lead to the better*

outcomes?



## A2309: CNI + everolimus: any cancers






## Effect of sirolimus on cancer and survival after kidney transplantation *Knoll et al. BMJ 2014*

|                            | Trials | Events | Patients | Hazard ratio<br>(95% Cl) | Hazard ratio<br>(95% CI) |
|----------------------------|--------|--------|----------|--------------------------|--------------------------|
| Any cancer                 |        |        |          |                          |                          |
| All trials                 | 21     | 243    | 5876     |                          | 0.60 (0.39 to 0.93)      |
| De novo trials             | 15     | 109    | 4717     |                          | 1.09 (0.74 to 1.61)      |
| Conversion trials          | 6      | 134    | 1159     | +                        | 0.34 (0.28 to 0.41)      |
| Low dose sirolimus trials  | 12     | 76     | 2384     |                          | 0.65 (0.30 to 1.41)      |
| High dose sirolimus trials | 9      | 167    | 3492     |                          | 0.57 (0.36 to 0.91)      |
| Non-melanoma skin cance    | r      |        |          |                          |                          |
| All trials                 | 21     | 150    | 5876     |                          | 0.44 (0.30 to 0.63)      |
| De novo trials             | 15     | 51     | 4717     |                          | 0.65 (0.36 to 1.17)      |
| Conversion trials          | 6      | 99     | 1159     |                          | 0.32 (0.24 to 0.42)      |
| Low dose sirolimus trials  | 12     | 54     | 2384     |                          | 0.43 (0.24 to 0.78)      |
| High dose sirolimus trials | 9      | 96     | 3492     |                          | 0.43 (0.26 to 0.70)      |
| Other cancer               |        |        |          |                          |                          |
| All trials                 | 21     | 106    | 5876     |                          | 1.05 (0.57 to 1.94)      |
| De novo trials             | 15     | 61     | 4717     |                          | 1.70 (0.98 to 2.93)      |
| Conversion trials          | 6      | 45     | 1159     |                          | 0.52 (0.38 to 0.69)      |
| Low dose sirolimus trials  | 12     | 24     | 2384     |                          | 1.73 (0.55 to 5.46)      |
| High dose sirolimus trials | 9      | 82     | 3492     |                          | 0.84 (0.52 to 1.36)      |
|                            |        |        | Eavour   | Sirolimus : Envours Co   | ntrol                    |

#### Favours Sirolimus : Favours Control

Tabriz , Iran 19-22 November 2019



## So, final words.....

- Cancer after Tx is a real problem (higher incidence and higher mortality)
- Risk for cancer increases with time post-transplant
- Higher SIR of viral related and immune related cancer > ESRD-Cancer
- Cessation of immunosuppression decreases risk for cancers with known or suspected viral cause
- mTORI may be beneficial for those at risk of NMSC
- mTORI is not the definitive treatment and may incur harms



## So, final words.....

- Post-transplant cancers are more common in the old recipients, but relatively much higher risk in young transplant patients
- Cancer recurrence is rare, but once recure, outcomes are poor



## Thank you all for your attention